DETERMINATION OF THE CONCENTRATION DEPENDENCE OF THE SECOND DERIVATIVE OF GIBBS' ENERGY WITH RESPECT TO COMPOSITION ON THE BASIS OF VAPOUR-LIQUID EQUILIBRIUM DATA*

Josef P. Novák, Jaroslav MATOUŠ, Josef ŠOBR and Jiří PICK

Department of Physical Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Received October 9th, 1980

The course of the second derivative of Gibbs' energy with respect to composition for binary systems is evaluated. The representation of this quantity in terms of different correlation relations (the Wilson, NRTL and UNIQUAC equations and the ASOG and UNIFAC methods) is also discussed.

The second derivative of Gibbs' energy with respect to composition, G11,

$$G11 = \left[\partial^2 (G^{\mathbf{M}}/RT) / \partial x_1^2 \right]_{\mathbf{T},\mathbf{P}}$$
(1)

is an important quantity which characterizes the thermodynamic stability of a system. The condition

$$G11 < 0$$
 (2)

is satisfied for the system which occurs in the homogeneous and metastable regions. The characteristic course of $G11(x_1)$ is illustrated in Fig. 1. The important characteristic of a binary system is the position of minimum of $G11(x_1)$ and/or its coordinates, *i.e.* x_0 and $(G11)_{x0}$. For the system which is at the critical temperature, it is $(G11)_{x0} = 0$ and $x_0 = x_{crit}$.

The importance of the $G11(x_1)$ course has been shown formerly when correlating the vapour-liquid equilibrium data¹, the liquid-liquid equilibrium data² and in discussing the applicability of correlation relations to describe the concentration dependence of activity coefficients³⁻⁵.

Relations for Determining G11 on the Basis of Vapour-Liquid Equilibrium Data

From thermodynamic relations we get the following expressions⁶⁻⁹ for G11 in a binary system:

^{*} Part XC in the series Liquid-Vapour Equilibrium; Part LXXXIX: This Journal 45, 1159 (1980).

Isothermal data:

$$G11 = (\partial P / \partial x_1)_{\rm T} [RT(y_1 - x_1)]^{-1} \sum_{i=1}^2 y_i (\overline{V}_i^{\rm g} - \overline{V}_i^{\rm I}), \qquad (3)$$

$$G11 = (\partial y_1 / \partial x_1)_{\rm T} (G11)^{\rm g} \sum_{i=1}^2 y_i (\overline{V}_i^{\rm g} - \overline{V}_i^{\rm l}) / \sum_{i=1}^2 x_i (\overline{V}_i^{\rm g} - \overline{V}_i^{\rm l}) ; \qquad (4)$$

Isobaric data:

$$G11 = -(\partial T/\partial x_1)_{\rm P} \left[RT^2(y_1 - x_1) \right]^{-1} \sum_{i=1}^2 y_i (\overline{H}_i^{\rm g} - \overline{H}_i^{\rm l}), \qquad (5)$$

$$G11 = \left(\partial y_1 / \partial x_1\right)_{\mathsf{P}} (G11)^{\mathsf{g}} \sum_{i=1}^2 y_i (\overline{H}_i^{\mathsf{g}} - \overline{H}_i^{\mathsf{l}}) / \sum_{i=1}^2 x_i (\overline{H}_i^{\mathsf{g}} - \overline{H}_i^{\mathsf{l}}) \,. \tag{6}$$

If we limit the description to the pressure range where it is possible to express the P-V-T behaviour of the vapour phase by the second virial coefficient, then

$$V^{g} = z^{g} RT/P = RT/P + B_{11}y_{1}^{2} + 2B_{12}y_{1}y_{2} + B_{22}y_{2}^{2} =$$

= $RT/P + B_{11}y_{1} + B_{22}y_{2} + y_{1}y_{2}\delta_{12}$. (7)

If we further justifiably assume that $V^1 \ll V^g$ and neglect the effect of pressure on the enthalpy of liquids, then the differential molar volumes of vaporization, the enthalpy and the second derivative of Gibbs' energy in the vapour phase, $(G11)^g$, will be given by the expressions¹⁰:

$$\sum_{i=1}^{2} y_{i} (\overline{V}_{i}^{g} - \overline{V}_{i}^{l}) = V^{g} = RT/P + B_{11}y_{1} + B_{22}y_{2} + y_{1}y_{2}\delta_{12}, \qquad (8)$$

$$\sum_{i=1}^{2} x_{i} (\overline{V}_{i}^{g} - \overline{V}_{i}^{l}) = V^{g} - (y_{1} - x_{1}) \left[B_{11} - B_{22} + \delta_{12} (y_{2} - y_{1}) \right], \qquad (9)$$

$$\sum_{i=1}^{2} y_{i} (\overline{H}_{i}^{g} - \overline{H}_{i}^{l}) = \sum_{i=1}^{2} y_{i} [\Delta H_{vi}^{0} + (P - P_{i}^{0}) (B_{ii} - T \partial B_{ii} / \partial T)] + y_{1} y_{2} P(\delta_{12} - T \partial \delta_{12} / \partial T) - (H^{E})^{1} - (y_{1} - x_{1}) (\partial H^{E} / \partial x_{1})^{1}, \qquad (10)$$

$$\sum_{i=1}^{2} x_{i} (\overline{H}_{i}^{g} - \overline{H}_{i}^{I}) = \sum_{i=1}^{2} x_{i} [\Delta H_{vi}^{0} + (P - P_{i}^{0}) (B_{ii} - T \partial B_{ii} / \partial T)] + (y_{1} - x_{1}) (y_{1} - y_{2}) (\delta_{12} - T \partial \delta_{12} / \partial T) P - (H^{E})^{I}, \qquad (11)$$

$$(G11)^{g} = 1/(y_{1}y_{2}) - 2P\delta_{12}/(RT), \qquad (12)$$

Collection Czechoslovak Chem. Commun. [Vol. 46] [1981]

where

$$\delta_{12} = 2B_{12} - B_{11} - B_{22} \,. \tag{13}$$

In case of an ideal behaviour of the vapour phase and on neglecting the heat of mixing in the liquid phase the following relatively simple relations result

$$G11 = (\partial P / \partial x_1)_{\rm T} / [P(y_1 - x_1)], \qquad (14)$$

$$G11 = \left(\frac{\partial y_1}{\partial x_1}\right)_{\mathrm{T}} / \left(y_1 y_2\right), \qquad (15)$$

$$G11 = -(\partial T/\partial x_1)_{\rm P} \left(\sum_{i=1}^2 y_i \,\Delta H_{\rm vi}^0\right) / \left[RT^2(y_1 - x_1)\right], \qquad (16)$$

$$G11 = \left(\frac{\partial y_1}{\partial x_1}\right)_{\rm P} \left(y_1 y_2\right)^{-1} \left(\sum_{i=1}^2 y_i \,\Delta H_{\rm vi}^0\right) / \left(\sum_{i=1}^2 x_i \,\Delta H_{\rm vi}^0\right). \tag{17}$$

That this extreme simplification is acceptable, it follows from the comparison of Eq. (14) with (18) which results from the combination of Eqs (3) and (8), *i.e.*

$$G11 = (\partial P / \partial x_1)_{\rm T} \, z^{\rm g} / [P(y_1 - x_1)] \,. \tag{18}$$

Considering that for usual systems at temperatures around boiling point it is $z^g \approx 0.95$, we get G11 from Eq. (14) about 5% higher compared to the exact relation (18). This error is, however, much lower than that one which results from an inaccurate determination of the derivative $\partial P/\partial x_1$.

The requirement of the accuracy of vapour-liquid equilibrium data of strongly non-ideal systems can be demonstrated by the following example: Let us consider a system with normal boiling point of 80°C for which further holds: $x_1 = 0.4$, $y_1 =$ = 0.6, $(G11)_{x_1=0.4} = 0.2$, $\Delta H_{v1}^0 = \Delta H_{v2}^0 = 33 \text{ kJ/mol. By inserting into Eqs (14) - (17)}$ we get $\partial P/\partial x_1 = 4.05 \text{ kPa}$, $\partial y_1/\partial x_1 = 0.48$, $\partial T/\partial x_1 = -12.5 \text{ K}$. Thus, it is evident that two experimental points differing by $\Delta x_1 = 0.05$ will exhibit the pressure difference $\Delta P = 0.2 \text{ kPa}$ (1.5 Torr), $\Delta y_1 = 0.0024$, $\Delta T = -0.062 \text{ K}$. These differences are often comparable to the experimental errors in these quantities and so the error in the determined derivatives $\partial P/\partial x$, $\partial y/\partial x$, $\partial T/\partial x$ for strongly non-ideal systems can be subjected to an error even 100% and plays a decisive role in the resulting error of G11.

Further it is necessary to draw attention to the fact that Eqs (3) and (5) or (14) and (16) cannot be practically used in the vicinity of the azeotropic point for they require extremely accurate data.

In case of isothermal or isobaric data, we should obtain, according to Eqs (3) and (4) or (5) and (6), the same values of G11 in the limits of the estimated maximum error $\delta(G11)$. It will be so just only in case of the thermodynamically consistent data. The difference in the values of G11 can be considered as a measure of thermodynamic consistence of experimental data and of correctness of the error estimates of δx , δy , δT and δP .

-					
- K		n	τ.	p.	
- 4	A	D	L	E.	ж.

	<i>x</i> ₁	ν.	Р	G1		
		y1	kPa	Eq. (14)	Eq. (15)	
	0.062	0.374	48.33			
	0.095	0.439	53.20	6.62 ± 0.05	6.49 ± 0.18	
	0.131	0.482	56.53	4.01 ± 0.03	4.01 ± 0.17	
	0.194	0.524	60.11	2.41 ± 0.02	2.29 ± 0.08	
	0.252	0.552	62.40	1.86 ± 0.01	1.77 ± 0.10	
	0.334	0.583	64.77	1.61 ± 0.02	1.64 ± 0.08	
	0.401	0.611	66.34	1.64 ± 0.01	1.75 ± 0.10	
	0.593	0.691	70.12	2.18 ± 0.04	$2\cdot 38\pm 0\cdot 09$	
	0.680	0.739	71.24	2.75 ± 0.06	3.15 ± 0.10	
	0.810	0.826	72.41	2.53 ± 0.4	4.31 ± 0.8	
	0.943	0.941	72.60	-0.2 ± 5	17·9 ± 9	
	0.947	0.945	72.60			

Calculated values of G11 for the ethanol(1)-water(2) system at 70°C. To calculate the errors, the values $\delta x = \delta y = 0.001$, $\delta T = 0.02$ K, $\delta P = 0.1$ kPa were used

Collection Czechoslovak Chem. Commun. [Vol. 46] [1981]

Determination of Derivatives $\partial P/\partial x$, $\partial y/\partial x$ and $\partial T/\partial x$. The employment of the relatively simple relations (14) - (17) is complicated by the need of derivatives $\partial P/\partial x$, $\partial y/\partial x$ and $\partial T/\partial x$. To determine them, a graphic differentiation¹ was used which is tedious and rather subjective. To be able to carry out the computations on a computer the following two numerical methods were used: a) the arithmetic average of two proportional differences, *e.g.*

$$(\partial P/\partial x)_{x=x_{i}} = F \approx (1/2) \left[(P_{i+1} - P_{i})/(x_{i+1} - x_{i}) + (P_{i} - P_{i-1})/(x_{i} - x_{i-1}) \right];$$
(19)

b) the Lagrange second-order polynomial. The respective relation is given in Appendix.

It was found that both methods give in case of "good" data practically the same results. In the opposite case (when there exist faulty points), however, the obtained values can differ considerably.

On the basis of the experimental errors δx , δy , δP , δT it is also possible to estimate the maximum error in corresponding derivatives and consequently also the error in G11. For instance, on the basis of Eq. (19) we get

$$\delta F = \left(\frac{\partial P}{\partial x}\right) = \left(\delta P\right) \sum_{j=i-1}^{i+1} \left|\frac{\partial F}{\partial P_j}\right| + \left(\delta x\right) \sum_{j=i-1}^{i+1} \left|\frac{\partial F}{\partial x_j}\right|, \tag{20}$$

where $\partial F/\partial P_i$ are determined from Eq. (19). For the error in G11 we get from Eq. (14)

$$\delta(G11) = (G11) \left\{ \left| \delta(\partial P/\partial x) / (\partial P/\partial x) \right| + \left| \delta P/P \right| + \left| \delta x / (y_1 - x_1) \right| + \left| \delta y / (y_1 - x_1) \right| \right\}.$$
(21)

We give in Table I the values of G11 and $\delta(G11)$ for the ethanol(1)-water(2) system determined on the basis of data by Mertl¹¹ at a temperature of 70°C. Except for several values whose $x_1 > 0.8$ and consequently are already in the vicinity of the azeotropic point, the agreement of calculated data is very good. The parameters of the G11 minimum determined graphically are: $(G11)_{x0} = 1.60 \pm 0.02$ and $x_0 = 0.36 \pm \pm 0.02$.

In Table II we present the minimum values of $(G11)_{x0}$ for the ethanol(1)-benzene(2) system determined on the basis of data of different authors. It is evident that the scatter of the obtained values of $(G11)_{x0}$ is greater than the error calculated on the basis of the assumed errors in x, y, T, P. This fact can be explained by systematic errors in individual measurements and by large sensitivity of G11 to the experimental errors. In Fig. 2, $(G11)_{x0}$ are plotted at different temperatures and through the points ob-

tained, the straight line is drawn. The line slope is in good agreement with the calorimetric data by Mrazek and Van Ness²⁷ at 25°C. According to their correlation it

TABLE II

Values of x_0 and $(G11)_{x0}$ for the ethanol(1)-benzene(2) system

	Expe	rimental	UNIQUAC		NRTL		Wilson		D-6
<i>t</i> , °C	<i>x</i> ₀	(G11) _{x0}	Rei,						
20	0.37 ± 0.03	0·77 ± 0·05							12
20	0.42 ± 0.03	$0.95 \pm 0.15(?)$	0.45	0.74	0.45	0.63	0.47	0.99	13
25	0.34 ± 0.02	0.62 ± 0.05	0.34	0.38	0.35	0.30	0.34	0.70	14
32	0.34 ± 0.03	0.77 ± 0.05	0.35	0.43	0.36	0.76	0.35	0.74	15
40	0.43 ± 0.02	0.76 ± 0.05	0.34	0.26	0.27	0.74	0.35	0.72	16
45	0.42 ± 0.02	0.90 ± 0.05	0.35	0.48	0.35	0.29	0.35	0.84	17
50	0.40 ± 0.03	1.10 ± 0.1	0.40	0.52	0.38	0.47	0.40	0.80	18
50	0.50 ± 0.04	$0.44 \pm 0.05(?)$	0.52	0.45	0.51	0.47	0.52	0.75	19
50	0.40 ± 0.02	076 ± 0.1	0.35	0.36	0.36	0.26	0.38	0.78	16
50	0.39 ± 0.02	1.05 ± 0.05	0.34	0.57	0.32	0.84	0.38	0.89	20
51	0.36 ± 0.02	0.95 ± 0.05	0.38	0.60	0.38	0.55	0.39	0.84	15
55	0.42 ± 0.02	1.05 ± 0.1	0.32	0.63	0.32	0.79	0.35	0.92	21
60	0.40 ± 0.03	0.70 ± 0.1	0.35	0.49	0.36	0.77	0.39	0.84	16
68	0.43 ± 0.03	0.9 ± 0.1			0.43	0.72	0.44	1.00	22
68	0.45 ± 0.05	1.10 ± 0.2	0.40	0.60	0.40	1.27	0.42	0.90	23
68	0.42 ± 0.02	1.20 ± 0.05	0.40	0.95	0.40	0.83	0.47	1.17	24
68	0.41 ± 0.02	1.25 ± 0.05	0.42	0.94	0.43	0.89	0.43	1.09	25
68	0.38 ± 0.04	1.15 ± 0.15	0.32	0.67	0.32	0.85	0.38	1.03	26
115	0.55 ± 0.05	1.70 ± 0.15	0.55	1.51	0.55	1.50	0.55	1.61	22

FIG. 2

Dependence of $(G11)_{x0}$ on temperature in the ethanol(1)-benzene(2) system. 1 straight line drawn through the points determined directly from experimental data (Table II), 2 UNIQUAC, 3NRTL, 4 Wilson, 5 UNIFAC, 6 ASOG

Collection Czechoslovak Chem. Commun. [Vol. 46] [1981]

should hold for this system at $x_1 = 0.35 \sim x_0$

$$\partial G_{11}/\partial T = -\partial^2 [H^{\mathrm{E}}/(\mathbf{R}T^2)]/\partial x_1^2 = 0.010_6$$

which is in very good agreement with the slope of the straight line drawn.

The minimum of the second-order derivative of Gibbs' energy $(G11)_{x0}$ was determined for the ethanol(1)-benzene(2) system also on the basis of the NRTL²⁸, UNIQUAC²⁹ and Wilson³⁰ equations. The parameters of these equations were taken from the Gmehling and Onken monograph³¹. The obtained dependences are given in Fig. 2 as well. Except for the Wilson equation, the determined values of $(G11)_{x0}$ are significantly lower, which is in agreement with the findings obtained previously^{1,32}. Further the applicability of the group-contribution methods UNIFAC³³ and ASOG³⁴ was verified as well and it was found that in this concrete case the ASOG method yielded better results.

The coordinates of the G11 minimum found for the aqueous solutions and mixtures of alcohols with benzene are given in Table III. The table presents also the values determined on the basis of light scattering which were taken from the Vuks monograph¹².

The dependence of $(G11)_{x0}$ on the number of carbon atoms in n-alcohols in systems water-n-alcohols³⁵ and benzene-n-alcohols is illustrated in Figs 3 and 4. The numbers at the points correspond to temperature in °C which they refer to. The dependence

FIG. 3

Dependence of $(G11)_{x0}$ on the number of carbon atoms in n-alcohols, $n_{\rm C}$, in the water-n-alcohol systems ($A \equiv ASOG$, $U \equiv$ $\equiv UNIFAC$)

Dependence of $(G11)_{x0}$ on the number of carbon atoms in n-alcohols, n_c , in the benzene-n-alcohol systems ($A \equiv ASOG$, $U \equiv UNIFAC$)

2996

Novák, Matouš, Šobr, Pick:

TABLE III

Coordinates of the $G11(x_1)$ minimum $(x_0 = (x_1)_{min})$

	t, °C	x_0^a	$(G11)_{x0}^{a}$	Ref.
Methanol(1)-water(2)	50	0.46 +	2.75 +	36
Methanol(1)-water(2)	65	0.47 +	2.80 +	36
Ethanol(1)-water(2)	25	0.41	1.52	12
Ethanol(1)-water(2)	25	0.35 +	1.23 +	37
Ethanol(1)-water(2)	50	0.35 +	1.42 +	37
Ethanol(1)-water(2)	70	0.36 +	1.60 +	11
Ethanol(1)-water(2)	115	0.40	1.75	38
1-Propanol(1)-water(2)	20	0.24	0.23	12
1-Propanol(1)-water(2)	60	0.26	0.35	39
1-Propanol(1)-water(2)	60	0.30	0.40	40
1-Propanol(1)-water(2)	88	0.27	0.60	41
2-Propanol(1)-water(2)	20	0.29	0.67	12
2-Propanol(1)-water(2)	80	0.32	1.0 —	42
2-Propanol(1)-water(2)	200	0.30	1.30	43
Allyl alcohol(1)-water(2)	90	0.29	1.0	44
1-Butanol(1)-water(2)	127	0.10 +	0 +	45, 46
Sec-butyl alcohol(1)-water(2)	110		0 +	45, 46
Isobutyl alcohol(1)-water(2)	129	0.12 +	0+	45, 46
Tert-butyl alcohol(1)-water(2)	20	0.24	0.38	12
Tert-butyl alcohol (1)-water (2)	58	0.18	0.50	47
2-Chloroethanol(1)-water(2)	65	0.30	1.70	48
Acetone(1)-water(2)	20	0.41	0.70	12
Acetone(1)-water(2)	60	0.45	0.70	49
Acetone(1)-water(2)	60	0.42	0.75	50
Methyl vinyl ketone(1)-water(2)	77	0.35	0.40	51
1,4-Dioxane(1)-water(2)	20	0.55	0.70	12
1,4-Dioxane(1)-water(2)	70	0.45 +	0.40 +	52
1,4-Dioxane(1)-water(2)	87	0.48	0.42	53
Tetrahydrofuran(1)-water(2)	65	0.24	0.01	54
Tetrahydrofuran(1)-water(2)	70	0.23 +	0.01 +	55
Tetrahydrofuran(1)-water(2)	71.8	0.23 +	0 +	56
1,3-Dioxolane(1)-water(2)	50	0.45 +	0.25 +	57
1,3-Dioxolane(1)-water(2)	70	0.45 +	0.35 +	57
N-Ethyl-sec-butylamine(1)-water(2)	20	0.10	0.20	58
Pyridine(1)-water(2)	20	0.10	1.50	12
3-Methylpyridine(1)-water(2)	75	0.07 +	0.002 +	12
3-Methylpyridine(1)-water(2)	70	0.08 +	0.05 +	59
4-Methylpyridine(1)-water(2)	70	0.10	0.30	59
Acetonitrile(1)-water(2)	77	0.40	0.90	60
Methanol(1)-benzene(2)	20	0.38	0.43	12
Methanol(1)-benzene(2)	45	0.45 +	0.60 +	61
Ethanol(1)-benzene(2) see Table II				

Liquid-Vapour Equilibrium				2997
Table III				
(Continued)				
	t, °C	x_0^a	$(G11)_{x0}^{a}$	Ref.
1-Propanol(1)-benzene(2)	45	0.40 +	1.30 +	62
1-Propanol(1)-benzene(2)	60	0.42	1.4 —	63
2-Propanol(1)-benzene(2)	45	0.42 +	1.20 +	64
2-Propanol(1)-benzene(2)	50	0.44	1.3 —	65
1-Butanol(1)-benzene(2)	45	0.38 +	1.50 +	62
1-Butanol(1)-benzene(2)	85	0.40	2.1 —	66
2-Butanol(1)-benzene(2)	45	0.42 +	1.70 +	67
2-Butanol(1)-benzene(2)	70	0.40	2.3	68
Tert-butyl alcohol(1)-benzene(2)	45	0.42 +	1.80	67
Isobutyl alcohol(1)-benzene(2)	45	0.42 +	1.45	67
Isobutyl alcohol(1)-benzene(2)	60	0.35	1.75	68
Tert-pentyl alcohol(1)-benzene(2)	30	0.40	1.50	69
1-Hexyl alcohol(1)-benzene(2)	30	0.45	1.60	69

^a The values x_0 and $(G11)_{x0}$ are determined with an accuracy of ± 0.05 . If better accuracy is attained, the sign + is attached; in the opposite case —.

is also given in the figures predicted by the group-contribution methods UNIFAC and ASOG. In case of methanol and ethanol with water, the predictions of both methods are good but they differ more substantially for n-propanol (and for 2-propanol and tert-butyl alcohol) where UNIFAC yields lower values. In mixtures of alcohols with benzene, the agreement of both methods with the experimental data for methanol and ethanol is very good, especially at lower temperatures.

DISCUSSION

The procedure proposed allows to determine the values $G11(x_1)$ directly from the experimental vapour-liquid equilibrium data. This, however, fortunately, is not the only source of these data. For strongly non-ideal systems the error in G11, which results from the experimental data on vapour-liquid equilibrium, is too large and so it is more convenient to start from the data on light scattering. For more ideal systems (the boundary will depend on the accuracy reached in measurement and on relative volatility of substances) the vapour-liquid equilibrium will be on the contrary more suitable for obtaining accurate G11 data.

We would like yet to emphasize that the determination of G11 on the basis of a correlation equation only will be successful only exceptionally, viz. most probably

with those systems which exhibit small deviations from ideality. As it has been demonstrated by the ethanol-benzene system, the $G11(x_1)$ course is not represented well not even by the modern correlation equations (in this particular case, with the exception of the Wilson equation). The G11 minimum is usually, in correlations, shifted lower than it corresponds to the experimental data and the resulting description corresponds to a system which is more non-ideal in comparison with reality.

Reasons of this shift are in our opinion as follows: The more non-ideal (*i.e.* having lower G11 value) and less symmetric $(x_0 \neq 0.5)$ the system is the higher activity coefficients it shows (we consider systems with positive deviations from the Raoult law here). The correlation relation used does not often allow (if it is to reproduce the G11 (x_1) minimum) to reach so high values of activity coefficients which the given system has. Then a shift of the $G11(x_1)$ minimum occurs in the direction (to lower G11 values if the true activity coefficients are higher) to reach the true activity coefficients.

This fact is also apparent in Table IV where the values of limiting activity coefficients are presented as they follow from the requirement of reproducing the G11 minimum with coordinates $x_0 = 0.4$ and $(G11)_{x0} = 0.90$. By none of the mentioned equations, the value $\gamma_i^{\infty} > 10$ was obtained. In the second part of the table, the values of limiting activity coefficients are given for the ethanol-benzene system which the above mentioned coordinates of minimum at 50°C approximately correspond

TABLE IV

Limiting activity coefficients for a system with $x_0 = 0.4$ and $(G11)_{x0} = 0.90$ (upper part) and for the ethanol(1)-benzene(2) system at 50°C (lower part of the table)

		γ [∞] ₁	γ_2^{∞}
Redlich-Kister $(d = 0)$		5.75	3.22
Redlich-Kister $(d = 1/3)$		9.00	8.88
van Laar $(D = 0)$		6.23	3.65
van Laar ($D = 4/3$)		9.45	7.21
Wilson		9.53	4.86
NRTL ($\alpha = 0.30$)		6.49	3.96
NRTL ($\alpha = 0.50$)		8.61	5.64
UNIQUAC		8.58	3.88
UNIFAC (ref. ⁷⁰) (50°C), ($x_0 = 0.40$, (G11) _{x0} = 0.65)		8.68	4.65
ASOG (50°C), $(x_0 = 0.40, (G11)_{x0} = 0.84)$		9.52	5.18
Ninni (20°C) (ref. ⁷¹)	-10	15.2	5.15
Udovenko (40° C) (ref. ¹⁶)		12.2	5.90
Brown, Smith (45°C) (ref. ^{17,72})		10.6	4.45
Zharov, Morachevskii (50°C) (ref. ²⁰)		12.3	4.26

to. In all four cases we have $\gamma_i^{\infty} > 10$. It is evident from it that on applying the given equations to these data, then, considering that the minimized quantity is more or less proportional to the activity coefficients, a shift of the G11 minimum will take place towards lower values. In case of systems yet more non-ideal and asymmetric, the agreement would be still worse.

The fact is also in agreement with the finding of Brandani⁷³ who intended to predict the limited miscibility of systems by means of experimental activity coefficients and the van Laar equation (this effect is, however, common also to the other correlations). In some cases, as γ_i^{∞} were too high, Brandani obtained such parameters for homogeneous systems which even predicted the heterogeneous systems, *i.e.* he obtained G11 < 0. The decisive importance of $G11(x_1)$ in binary systems for the correlation of liquid-liquid equilibrium data in the ternary system will be shown in a next work.

APPENDIX

The Lagrange interpolation polynomial of the second order has for our case the form

$$P(x) = \sum_{\substack{j=i-1\\k\neq j}}^{i+1} \prod_{\substack{k=i-1\\k\neq j}}^{i+1} P_j(x - x_k) / (x_j - x_k) .$$
(A1)

For the derivative at a point x_i we get from Eq. (A1)

$$(\partial P/\partial x)_{x=x_{i}} = F = P_{i-1} \cdot (x_{i} - x_{i+1}) / [(x_{i-1} - x_{i}) (x_{i-1} - x_{i+1})] + + P_{i} [(x_{i} - x_{i+1}) + (x_{i} - x_{i-1})] / [(x_{i} - x_{i-1}) (x_{i} - x_{i+1})] + + P_{i+1} \cdot (x_{i} - x_{i-1}) / [(x_{i+1} - x_{i-1}) (x_{i+1} - x_{i})].$$
 (A2)

The derivatives needed for estimating the errors in Eq. (20) are given by the expressions

$$\begin{split} \partial F |\partial P_{i-1} &= (x_i - x_{i+1}) / [(x_{i-1} - x_i) (x_{i-1} - x_{i+1})], \\ \partial F |\partial P_i &= [(x_i - x_{i+1}) + (x_i - x_{i-1})] / [(x_i - x_{i-1}) (x_i - x_{i+1})], \\ \partial F |\partial P_{i+1} &= (x_i - x_{i-1}) / [(x_{i+1} - x_{i-1}) (x_{i+1} - x_i)], \\ \partial F |\partial x_{i-1} &= -P_{i-1} \cdot (x_i - x_{i+1}) [(x_{i-1} - x_{i+1}) + (x_{i-1} - x_i)]. \\ &\cdot [(x_{i-1} - x_i) (x_{i-1} - x_{i+1})]^{-2} + \\ &+ P_i / (x_i - x_{i-1})^2 + P_{i+1} / (x_{i+1} - x_{i-1})^2, \\ \partial F |\partial x_i &= P_{i-1} / (x_{i-1} - x_i)^2 + P_{i+1} / (x_{i+1} - x_i)^2 - \\ &- P_i [(x_i - x_{i+1})^2 + (x_i - x_{i-1})^2] / [(x_i - x_{i-1}) (x_i - x_{i+1})]^2, \end{split}$$

$$\frac{\partial F}{\partial x_{i+1}} = -P_{i-1}/(x_{i-1} - x_{i+1})^2 + P_i/(x_i - x_{i+1})^2 - P_{i+1}(x_i - x_{i-1}) \left[(x_{i+1} - x_i) + (x_{i+1} - x_{i-1}) \right].$$

$$\cdot \left[(x_{i+1} - x_{i-1}) (x_{i+1} - x_i) \right]^{-2}. \qquad (A3)$$

LIST OF SYMBOLS

B _{ii}	second virial coefficient
G	molar Gibbs' energy
G11	second-order derivative of Gibbs' energy with respect to composition in the liquid phase
$(G11)_{x0}$	ordinate of $G11(x_1)$ minimum
H	molar enthalpy
H^{E}	enthalpy of mixing in the liquid phase
$\Delta H_{\rm vi}^0$	heat of vaporization of pure substance at temperature T and pressure P_i^0
P	pressure
P_i^0	saturated vapour pressure of substance at temperature T
R	gas constant
Т	temperature
x	mole fraction in the liquid phase
x_0	coordinate of $G11(x_1)$ minimum
y	mole fraction in the vapour phase
z = PV/RT	compressibility factor
V	volume
γ [∞]	activity coefficient at infinite dilution
812	quantity defined by Eq. (13)
8	error operator

Superscripts

- E excess quantity
- g gas phase
- 1 liquid phase
- M mixing quantity
- (bar) partial molar quantity

Subscripts

i component, summation index

j component, summation index

REFERENCES

- 1. Suška J., Novák J. P., Matouš J., Pick J.: This Journal 37, 2664 (1972).
- 2. Lampa J., Matouš J., Novák J. P., Pick J.: This Journal 45, 1159 (1980).
- 3. Novák J. P., Palacká E., Voňka P., Pick J.: This Journal 44, 3490 (1979).
- 4. Novák J. P., Suška J., Matouš J., Pick J.: This Journal 39, 695 (1974).
- 5. Lempe D., Feix G., Bittrich H.-J.: Chem. Tech. (Leipzig) 31, 204 (1979).
- 6. Haase R.: Thermodynamik der Mischphasen. Springer, Berlin 1956.

- Storonkin A. V.: Termodinamika Geterogennykh System. Izd. Leningrad. Univ., Leningrad 1967.
- 8. Prigogine I., Defay R.: Chemical Thermodynamics. Longmans, London 1954.
- 9. Rowlinson J. S.: Liquids and Liquid Mixtures. Butterworth, London 1969.
- Novák J. P., Malijevský A., Šobr J., Matouš J.: Plyny a plynné směsi. Academia, Prague 1972.
- 11. Mertl I.: This Journal 37, 366 (1974).
- 12. Vuks M. F.: Rasseyanie Sveta v Gazakh, Zhidkostyakh i Rastvorakh. Izd. Leningrad. Univ., Leningrad 1977.
- 13. Kippling J. J., Tester D. A.: J. Chem. Soc. 1952, 4128.
- 14. Smith V. O., Robinson R. L. jr.: J. Chem. Eng. Data 15, 391 (1970).
- 15. Nielsen R., Weber J. H.: J. Chem. Eng. Data 4, 145 (1959).
- 16. Udovenko V. V., Fatkulina L. G.: Zh. Fiz. Khim. 26, 719 (1952).
- 17. Brown I., Smith B.: Aust. J. Chem. 7, 264 (1954).
- 18. Lehfeldt N.: Phil. Mag. 46, 42 (1898).
- 19. Litvinov N. D.: Zh. Fiz. Khim. 26, 1405 (1952).
- 20. Zharov V. T., Morachevskii A. G.: Zh. Prikl. Khim. 36, 2397 (1963).
- 21. Yuan K. S., Lu B. C.-Y., Ho J. C. K., Kespande A. K.: J. Chem. Eng. Data 8, 549 (1963).
- 22. Ellis S. R. M., Clark M. B.: Chem. Age India 12, 377 (1961).
- 23. Ellis S. R. M., Thwaites J. M.: Birmingham Univ. Chem. Engr. 6, 78 (1955).
- 24. Landwehr J. C., Yeruzanis S., Steinhauser H. H.: Chem. Eng. Data Ser. 3, 231 (1958).
- 25. Maripuri V. T., Ratcliff G. A.: J. Chem. Eng. Data 17, 366 (1972).
- 26. Wehe A. H., Coates J.: AIChE J. 1, 241 (1955).
- 27. Mrazek R. V., Van Ness H. C.: AJChE J. 7, 190 (1961).
- 28. Renon H., Prausnitz J. M.: AIChE J. 14, 135 (1968).
- 29. Abrams D. S., Prausnitz J. M.: AIChE J. 21, 116 (1975).
- 30. Wilson G. M.: J. Amer. Chem. Soc. 86, 127 (1964).
- 31. Gmehling J., Onken U.: Vapor-Liquid Equilibrium Data Collection. Chem. Data Series, Dechema, Frankfurt 1977.
- 32. Cigna R., Sebastiani E.: Ann. Chim. (Roma) 54, 1048 (1964).
- 33. Fredenslund A., Gmehling J., Rasmussen P.: Vapor-Liquid Equilibria Using UNIFAC. Elsevier, Amsterdam 1977.
- 34. Kojima K., Tochigi T.: Prediction of Vapor-Liquid Equilibria by the ASOG Methods. Elsevier, Amsterdam 1979.
- 35. Zsolt K., Novák J. P.: Unpublished results.
- 36. McGlashan M. L., Williamson A. G.: J. Chem. Eng. Data 21, 196 (1976).
- Larkin J. A., Pemberton R. C.: Thermodynamic Properties of Mixtures of Water + Ethanol between 298.15 and 383.15 K, NPL Report Chem. 43, January 1976.
- 38. Otsuki H., Williams F. C.: Chem. Eng. Progr., Symp. Ser. 49, 55 (1953).
- 39. Schreiber E., Schuettau E., Rant D., Schubert H.: Z. Phys. Chem. (Leipzig) 247, 23 (1976).
- 40. Murti P. S., Van Winkle M.: Chem. Eng. Data Ser. 3, 72 (1958).
- 41. Dawe R. A., Newsham D. M. T., Ng S. B.: J. Chem. Eng. Data 18, 44 (1973).
- 42. Masashi T.: Kagaku Kogaku 31, 451 (1967).
- 43. Barr-David F., Dodge B. F.: J. Chem. Eng. Data 4, 107 (1959).
- 44. Grabner R. W., Clump C. W.: J. Chem. Eng. Data 10, 13 (1965).
- 45. Francis A. W.: Critical Solution Temperatures. Amer. Chem. Soc., Washington D.C. 1961.
- Kogan V. B., Fridman V. M., Kafarov V. V.: Spravochnik po Rastvorimosti. Izd. Akad. Nauk, Moscow 1961.
- 47. Quitzch K., Kopp R., Reuker W., Geiseler G.: Z. Phys. Chem. (Leipzig) 237, 256 (1968).

Novák, Matouš, Šobr, Pick

- 48. Komarov V. M., Kokurina A. M.: Zh. Prikl. Khim. (Leningrad) 42, 1431 (1969).
- 49. Eduljee H. E., Kumarkrishnarao V. N., Rao N.: Chem. Eng. Data Ser. 3, 44 (1958).
- 50. Kojima K., Tochigi K., Seki H., Watase K.: Kagaku Kogaku 32, 149 (1968).
- 51. Jakubíček J.: This Journal 28, 3180 (1963).
- 52. Kortuem G., Valent V.: Ber. Bunsenges. Phys. Chem. 81, 752 (1977).
- 53. Schneider C. H., Lynch C. C.: J. Amer. Chem. Soc. 65, 1063 (1943).
- 54. Shnitko A. V., Kogan V. B.: Zh. Prikl. Khim. (Leningrad) 41, 1236 (1968).
- 55. Matouš J., Novák J. P., Šobr J., Pick J.: This Journal 37, 2653 (1972).
- 56. Matouš J., Hrnčířík J., Novák J. P., Šobr J.: This Journal 35, 1904 (1970).
- 57. Hrnčířík J., Matouš J., Novák J. P., Šobr. J.: Sb. Vys. Šk. Chemicko-Technol. Praze N3, 151 (1979).
- 58. Davison R. R., Smith W. H.: J. Chem. Eng. Data 14, 296 (1969).
- 59. Andon R. J. L., Cox J. D., Herington E. F. C.: Trans. Faraday Soc. 53, 410 (1957).
- 60. Blackford D. S., York R.: J. Chem. Eng. Data 10, 313 (1965).
- 61. Strubl K., Svoboda V., Holub R.: This Journal 37, 3522 (1972).
- 62. Brown I., Smith F.: Aust. J. Chem. 12, 407 (1959).
- Udovenko V. V., Mazanko T. F.: Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. 15, 1654 (1972).
- 64. Brown I., Fock W., Smith F.: Aust. J. Chem. 9, 364 (1956).
- 65. Nagata I., Ohta T., Uchiyama Y.: J. Chem. Eng. Data 18, 54 (1973).
- 66. Mann R. S., Shemilt L. W., Waldichuch M.: J. Chem. Eng. Data 8, 502 (1963).
- 67. Brown I., Fock W., Smith F.: J. Chem. Thermodyn. 1, 273 (1969).
- 68. Echevaria H. R.: This Journal 38, 1295 (1973).
- 69. Myers R. S., Clever H. L.: J. Chem. Thermodyn. 2, 53 (1970).
- Skjold-Jørgensen S., Kolbe B., Gmehling J., Rasmussen P.: Ind. Eng. Chem., Process Des. Develop. 18, 714 (1979).
- 71. Ninny A.: Ann. Acad. Sci. Fenn. A55, 2 (1940).
- 72. Schreiber L. B., Eckert C. A.: Ind. Eng. Chem., Process Des. Develop. 10, 572 (1971).
- 73. Brandani V.: Ind. Eng. Chem., Fundam. 13, 154 (1974).

Translated by J. Linek.